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A general treatment is given, using path integral methods, of obtaining accurate 
estimates on the rate of growth at large order of the perturbation coefficients for 
the lowest eigenvalue (ground-state energy) of a large class of anharmonic 
oscillators. Simple sufficient conditions are given on the potential V(x) so that 
accurate upper and lower bounds on the perturbation coefficients may be 
derived. Several examples are given which generalize previous results. Examples 
from Euclidean quantum field theory are also considered. 
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energy; large deviations; instantons. 

1. I N T R O D U C T I O N  

The fact that  divergent per turbat ion series can in many  cases be resummed 
has proven to be a very useful and interesting development  for both quan-  
tum mechanics and quan tum field theory (see Refs. 1-3 and references 
therein). However,  it is not  often easy to prove rigorously that a given per- 
turbat ion series is divergent and therefore requires resummation.  Also, cen- 
tral to the use of resummat ion  are accurate estimates on the rate of growth 
of the per turbat ion coefficients at large order. There are presently three 
rigorous techniques for proving divergence and doing large-order 
estimates: W K B  methods,  (4'51 Feynman  diagram methods,  (6 9,12/ and path 
integral methods.  (8 13) In this article, we will give a unified treatment of 
path integral methods,  and to a certain extent Feynman  diagram methods,  
as applied to the per turbat ion series for the lowest eigenvalue (ground-state 
energy) of a large class of anharmonic  oscillators. 

This paper is dedicated to the memory of Mark Kac. 
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Specifically, we will consider the asymptotic perturbation series as 
2--.0 +, 

E(2)~  ~ a~2 k (1.1) 
~=o 

for the ground-state energy E(2) of the Hamiltonian 

d2 1) (1.2) H(2) = 2  ( - -  ~xz+X2-- + 2V(x) 

2 ~> 0. Accurate upper and lower bounds on the perturbation coefficients ae 
that will prove divergence of the series (1.1) and give the correct rate of 
growth of ak as k --. oo will follow from simple sufficient conditions on the 
potential V(x). In some cases, path integral methods can be used to find 
very detailed asymptotics of the ak for large k [-see (4.3)]. However, this 
requires considerably greater effort, and we will not pursue this here. It is 
possible, though, to do asymptotics of lakl 1/k relatively easily by path 
integral methods, and we will compute such asymptotics for some of the 
examples of Section 4. The asymptotics of lakl ~/k can be thought of as 
large-deviation results ~ and as instanton expansions. ~ 

Our results are stated in Section 2 (Theorem 2.4 is our main result) 
and proofs are given in Section 3. The reader may initially wish to skip 
Section 3 and go on directly to Section 4, where applications are given. 
Our applications generalize those results already in the literature. Included 
in Section 4 are applications to Euclidean quantum field theory. Finally, 
some possible directions for further research on large-order estimates are 
discussed in Section 5. 

In order to give the reader a better idea of our results, we will briefly 
summarize what we obtain for the applications in Section 4. Our best 
results are for polynomial potentials. If 

2m 

V(x)= ~ c~nx ~, m=2,  3 .... (1.3) 
n = 0  

with either c~, >~ 0, or ( - 1 )  n c~ n >~ 0, Vn, and ~2m = 1, then our upper and 
lower bounds on the a k are accurate enough to prove that 

lim a~ ~/k k+oo [ ( m -  1)k]! =Cmexp[--infS(fb)+m] (1.4) 

w h e r e c m = ( m - 1 )  (m ~) and 

1 
S(~b) =2[Ju [-(V~'b)2 (s)+ ~b2(s)] d s - l n  ~R [ r ds (1.5) 
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Previous results (4A~ considered only the monomial case, V(x)= x 2m. The 
appearance of the infimum of S(~b), with S(~b) defined as in (1.5), in the 
asymptotics of (1.4) is what links these results to large deviations (36) and to 
instanton expansions. (3) 

In Section 4:3 we consider the pressure p(2) for a two-dimensional 
Euclidean quantum field theory with interaction again given by (1.3) and 
with the same sign restrictions on the ~n. If a~ is now defined by 

P()~)~ ~ ak 2~, 
k = 0  

2 ~ 0  + 

then our methods are strong enough to prove that (1.4) again holds for ak 
but with S(~b) now defined by 

1 
S(~b) = ~  f ~  [(V~b) 2 ( x ) +  r d2x-ln f~)2m(x)d2x 

The previous result (H) only treated the case of V(x)=x 4. Viewed as a 
large-deviation result, this quantum field theory example is very much out- 
side the type of problem covered by the standard methods. (36) 

The case that motivated this paper was the exponential interaction 

V ( x )  = x m e  ~x 

with, for example, rn = 0, 1, 2, 3 ..... ~ > 0. For this case, we prove in Sec- 
tion 4.2 that 

C~kmk exp(ac~2k2)k! ~< ( - 1 )*+ ~ ak <<" Cw exp(bc~2k2)k! (1.6) 

where all constants are positive. The m = 0  case of (1.6) was proven in 
Ref. 12 by using Feynman diagram techniques. It was in trying to extend 
this earlier result to the m r 0 case that we developed the general approach 
leading to Theorem 2.4. 

Lastly, we mention a more unusual potential, namely 

V(X)=X2m[1 + COS(X3/2)], m = 0 ,  1, 2,... 

While all our other examples are monotone functions for large [x], this 
potential oscillates with unbounded amplitude as x -~  +oo. However, our 
methods still apply and in Section 4.2 we prove that 

Cfk(4m 3/2)k exp(ak4) ~< _ 1)*+ 1 k! ( a, ~ C~k '~k exp(bk4) 
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again with all constants positive. All of these examples will be discussed in 
much greater detail in Section 4. 

We have not attempted to write our results in the utmost generality, 
but have stuck to the one-dimensional anharmonic oscillator to keep the 
paper pedagogically uncomplicated and close to the motivating examples 
of the theory. There are certainly other operators with lowest eigenvalue 
perturbation series for which our results should be relevant--multidimen- 
sional anharmonic oscillators being the most obvious example. Since our 
methods depend on path integrals, an immediate necessary restriction for 
our results to be applicable to an operator H(2) is that the unperturbed 
operator H(0) have an inverse whose kernel is positive-definite, and 
therefore suitable to be the covariance of a Gaussian measure. 

2. STATEMENT OF RESULTS 

Throughout this paper C, C 1, and C2 will denote positive constants 
independent of k, whose values many differ from line to line. The operator 
H(2) of (1.2) acts on L2(~). The potential V(x) must satisfy the following 
four conditions (there will be one additional condition): 

(a) V(x) is the restriction to the real axis of an entire function. 

(b) V(x) is real and bounded below, Vx ~ ~. 

(c) 3 positive constants C1, C2, and f i < 2  such that I V(z)l ~<C1 
exp(C2 Izl~), VzeC. 

(d) If V(z)=Y~=oanZ n, z e C ,  then either (i) a,>~O, Vn, or (ii) ( - 1 )  ~ 
~n~>0, Vn. 

We will discuss these conditions at the end of this section and in Sec- 
tion 5. For this section, the reader may wish to keep in mind the best 
known example, V(x) = x 2m, m = 2, 3 ..... Next, we give some definitions and 
results concerning path integrals. It follows from the Feynman-Kac for- 
mula (see, e.g., Ref. 9, Theorem 6.3 and Corollary, and p. 183) that 

E(2) = - lim 1 In Zx(2) 
T ~  T 

where 

Zx(2) = f e -~v<o) dl2x(O) 

in which 

~ r/2 
v ( O )  = ~ -  T/2 v ( O ( s ) )  #s  
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and d#x((~) is the mean-zero Gaussian measure with covariance 

Gx(s, t)= ( - ~ x +  1) 1 (s, t) 

Gx is the kernel of the integral operator ( - d x +  1) 1, where d x is the 
Laplacian obeying X = p  (periodic), D (Dirichlet), 0 (free) boundary con- 
ditions on [ -  T/2, T/2]. The covariances are given explicitly by 

Go(s, t ) =  1/2e ts-tl 

Gp(s, t) = Go(s, t) + (1 - e -  r) 1 e T cosh(s - t) 

GD(S, t )=Go(s  , t ) - ( 1 - e  2 T ) - l e - T [ - c o s h ( s _ t ) _ e - r c o s h ( s + t ) ]  

fors,  t e [  T/2, T / 2 ] . W e l e t  x - uk.a(Xx ..... Xk) denote the kth Ursell function 
(Ref. 9, p. 213) with respect to the measure exp[-2V(~b)] dl~x((~)/Zx(2). 

Our first proposition gathers together several necessary preliminary 
results, the proofs of which are mostly straightforward. The main point of 
this proposition is the representation (2.1) giving the coefficient ak in terms 
of an Ursell function, as in Ref. 9, Section 20. 

Proposition 2.1. Assume that V satisfies (a) (c). Then H()O is a 
self-adjoint operator with discrete spectrum. The lowest eigenvalue E().) is 
nondegenerate and has an asymptotic perturbation series as 2 ~ 0 + 

E(2)~  ~ ak2 k 
k = 0  

with the coefficients ak having the representation 

(-1)~+1 fR ak-- k! k , dk 1suOk'o(V(O(O))' V(~(S2))'"" V(O(Sk))) (2.1) 

The first of our main results is a bracketing inequality, originally due 
to Spencer <13) for the case of V(x )=  x 2m, which compares a k with the finite- 
T quantities 

a~ ( T) - 1 d~k ~=o Tk! In Zx(2) 

( _  1) k+' fT/2 UXo(V(O(s~) ..... 
Tk! - -  r/2 dks V(fb(sk))), X =  p, D, 0 (2.2) 

Theorem 2.2. If V satisfies (a) (d), then for all kT> 1 and T, 

( -  1) k+l a~(T) <~ ( -  1) k + l  ak  ~< ( -  1) k+l aP(T) (2.3) 

822/46/5-6-29 
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Remark. Our proof actually shows the additional inequality 

( - 1 )  x+l aD(T)~ (--1)k+' aOk(T)<~ ( _  1)k+, ak (2.4) 

The free boundary condition lower bound on ( - l )  ~+~ ak is used in 
Ref. 10. However, (2.3) is sufficient for our purposes in this paper. We have 
mentioned this additional lower bound, since there might be examples 
where free boundary conditions are technically easier to work with than 
Dirichlet. 

The partition function Zx(2) also has an asymptotic perturbation 
series 

with 

Zx(2 )~  ~ bX(T)2 k 
k = 0  

b (T) = (-1-)* f k! 3 V*(~) d#x(~) 

We make a final assumption, implicitly on V, concerning the large-k 
behavior of bX(T). 

(e) 3 positive constants ko, c, and T independent of k and functions 
f~,x(k) and fz.x(k) such that for k/> ko and some T, 

kkff, x(k) <~ f V*(O) d#x(O) <~ k*fk2,x(k), Z =  p, D, 0 

where f l .x(k) ~ oo as k ~ oo, f~,x(k ) is log convex, and 

f ~,x(j)/f ~-xl(k - 1) = O[(j/k)  `j] 

for ko<~j<~ [k/2]. 

For some examples, it is useful to have an alternate form of this 
assumption. 

(e') 3 positive constants ko, e, and T independent of k and functions 
gl,x(k) and g2,x(k) such that for k ~> k o and some T, 

. ~ Vk(q~)d#x(O)<<g2x(k k gfx(k)<~j ), X = p ,  D, 0 

with gl,x(k) >>- e ̀ k. 

Assumptions (e) and (e') will be discussed in Section 5. 
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It turns out that the coefficients b~(T) are much easier to estimate 
from above and below than the coefficients ak or a~(T). Our next result 
reduces large-order estimates of aX(T) to estimates of bX(T). 

T h o o r o m  2.3. Assume V satisfies condition (e). Then 

aX(r) = - ( I / T )  bX(T){ 1 - O[1/f~,x(k)] } (2.5a) 

for k/> ko. If V satisfies condition (e'), then 

aX(T) = - ( l / T )  b~C(T){ 1 - O [k/gl,x(k)] } (2.5b) 

for k >~ ko. 

Remark 1. Assumption (e) will be verified for polynomial potentials 
in Section 4.1 and assumption (e') will be verified for exponential poten- 
tials in Section 4.2. 

Remark 2. For V obeying (a)-(d), the bound 

1 k 
( 1) k+l  ~ _ < ( -  ) -- a k (T) -.~ - - - f - -  b~ (T) 

holds for all k. This follows from (3.7), the Feynman graph representations 
(3.8)-(3.10), and the identical representation 

1 (--1)k+1 k k fr / :  
Tk! n~=o nk=o .~e r~ - r/2 l~y 

where Fk is the same as F;  in (3.8), but with no connectedness requirement. 
Since the sum over all graphs contains the sum over connected graphs, the 
above inequality follows, since all terms in the sums are nonnegative. If this 
inequality is combined with Theorem 2.2, it follows that 

( -  1)k + l ak <<, bP( T) 

for any V satisfying (a)-(d). 
The point to notice at this stage is that, taken together, Theorems 2.2 

and 2.3 reduce upper and lower bounds on a~ to upper and lower bounds 
X on bk(T), X = p ,  D. As we mentioned before, bX(T) is much easier to 

estimate. In fact, as the examples of Section 4 will show, the techniques 
needed for b~(T) will be, roughly speaking, H61ders inequality and hyper- 
contractivity for upper bounds and Jensen's inequality for lower bounds. 

Our main result is the following theorem. 
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T h e o r e m  2.4. Assume V satisfies (a)-(e). Then 3 positive constants 
C~, C2 such that for k ~> k0, 

f~,D(k) ( 1)k+ , f~p(k) 
Clkk k! <~ - ak<~C2 kk-  "k! 

If instead V satisfies (a)-(e'), then for k ~> k0, 

g~,w(k) .< ( _  1)k+ ~ g2k p(k) 
Cl ~ - - ~  ak~< C2 k! 

Remark 1. Theorems 2.3 and 2.4 only require condition (e) or (e') 
to hold for a single fixed T. However, for the examples of Section 4, con- 
dition (e) or (e') holds for all T with possibly f~,x, gi.x, i =  1, 2, being T- 
dependent. Also, the proof of Theorem 2.4 only requires the lower bound 
of condition (e) or (e') to hold for X =  D and the upper bound to hold for 
X = p .  It is also worth mentioning that f~,D and g:,D may be replaced, 
respectively, with fl.o and g~.o, in the lower bounds of Theorem 2.4, as a 
result of the Remark following Theorem 2.2. 

Remark 2. As mentioned in the Introduction, it is also possible to 
derive exact asymptotics of ]a~l ~/k as k ~ oe by path integral methods. We 
do not attempt to do this in the generality of Theorem 2.4, but instead we 
will do such asymptotics for specific cases in Section 4. 

Remark 3. The exact values of C~, C2 are C 2 = l / T ,  
C1 = ( l / T ) ( 1 -  e) for some 0 < e < 1. The constants C1, C2 follow from the 
( l / T ) { 1 -  O[1/fl ,x(k)]} term in (2.5a) and the similar term in (2.5b). 

It should be emphasized that it is only assumption (e) or (e') that 
places a condition on V that guarantees that the series (1.1) is divergent. 
The bracketing inequality (2.3), which only assumes (a)-(d), can hold even 
when (1.1) converges, such as when V(x)= x 2. In regards to the other con- 
ditions, assumption (b) ensures that H(,~) is self-adjoint and has a lowest 
eigenvalue. Assumption (c) guarantees that the asymptotic series (1.1) 
exists. If V grows too fast, say V(x)=exp(x2),  then derivatives of E(2) at 
2 = 0 + will fail to exist beyond a certain order. Condition (d) is the crucial 
assumption for the proof of Theorem 2.2, which should be clear from the 
discussion following (3.6) and (3.7). 

3. P R O O F S  OF R E S U L T S  

Proof of Proposition 2.1 Since V is real and bounded below, it 
easily follows that 1t(2) is self-adjoint, for example, by taking the 
Friedrichs extension. ~14) Alternately, V~ L~oc(~ ), since V is continuous, so 
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that Kato's inequality yields (essential) self-adjointness (Ref. 14, 
Theorem X.28). Now the term �89 as Ixl- -*~ and is in 
L(oc(~ ), so H(2) has only a discrete spectrum with a complete set of eigen- 
functions (Ref. 15, Theorem XIII.67). The nondegeneracy of the ground 
state follows from lxZ'-k}tV(x) being positive and in L~oo(~) (Ref. 15, 
Theorem XIII.47). 

The proof that E(2) has an asymptotic perturbation series and that 
(2.1) holds directly follows Simon's proof for the x 4 case (Ref. 9, Sec- 
tion 20). Our assumptions (a)-(c) allow us to replace x 4 with V(x) 
everywhere in Simon's proof. We sketch the proof for completeness. If we 
let 

ET(2 ) = - ( l / T ) I n  Zx(2) 

then Lemma 20.1(b) of Ref. 9 shows that existence of an asymptotic pertur- 
bation series for E(2) will follow from a bound 

d2-z E T( )O <. C ~ , k >~ O (3.1) 

with 0~<2~< 1, and Ck independent of T. Using the Ursell function 
representation, as in (2.2), we see that 

d ~ ( _ 1 )  ~+ 1 

- ~1~/2 dksbl~ ..... V(~)(Sk))) 

( 1 lk! 
f d~s ~o.( v(~(sl)),..., v((~(sk))) 

T -r/2<s~< .. <,k<r/2 

(3.2) 
The bound (3.1) is proven by showing that 

Ju~ V(~b(sk)))[ ~<A~ e x p ( - B  I s j - s j _ l ] )  (3.3) 

for any 2 ~< j ~< k. By using 

Is~-sll<~k max Isj-sj 1] 
2<~j<~k 

with (3.3) we obtain 

lu~ V((~(sk)))t ~<Ak e x p ( - B  tsk--s~[/k) (3.4) 

which, when combined with (3.2), yields (3.1). In order to prove (3.3), 
Simon next uses Cartier's formula (Ref. 9, p. 1 3 1 ) t o  write the Ursell 
function as 

u~ ..... v(~(sk))) = ( l /k ) (~(s~) - . .  ~(s~))~ 
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where ( . ) a  is the expectation with respect to 

k 

@ exp[-2V(~bj)] d#o(Oj)/Z(2 ) 
j = l  

All other notation is as in Ref. 9, p. 214, except that qj(sj) 4 should be 
replaced by V(~bj(sj)), x 4 by V(xj), and N by T/2. The argument leading up 
to the estimate 

1 ( 2 ( S l ) 2 ( s ~ ) ) 1 < < . Z  le-~t~ 'l12e-" ~L'"~?oll 1!2e-"L'"~?011 (3.5) 
remains unchanged, where e - - i n f o ~ [ E 2 ( 2 ) - E ( 2 ) ]  is still strictly 
positive, since the spectrum of H(2) is discrete and E(2) is nondegenerate. 
The partition function 

Z = (~2o, e-rLf2o) 

is decreasing in T, so that Z~> (~0, f2) 2. The proof that the norms on the 
right side of (3.5) are bounded still holds, since this depended on three facts 
about x 4 that are still true for our V(x). They are that V(x) is bounded 
below, (12(@(0))lm) is finite for all m, and I~ ' lmexp(-L)  is a bounded 
operator for all m. The latter two assertions hold because of our 
assumption (c) on the growth of V(x). 

In order to prove (2.1), we let ~k equal the right side of (2.1), so that 

~k= ( -1 )k+a  f0 d k 1 S b/0k,0(V(r V(r V(O(Sk))) 
<2S2 < . . .  < 2 S k  

Similarly, 

aO(T)=(-1)~+' f d~s o T -~/2<2~,< ... <25k<2~/~ U~,o(V(r V(O(s~))) 

Since we know that ak = limr-~ oo a~ (2.t) will follow from showing that 
a~ ~ gt k as T ~  oo. We may write ak as 

T _T/2<sI<T/2 
Sl  < 2 s 2 < 2  . , .  < 2 S k  

aks U~.o(V(r v(r  

which gives us 

,f 
l a k -  a~ = ~  -T/2 . . . . .  T/2<sk 

6,1<2 - . .  < s k 

dks U~ V((o(sk))) 
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Using (3.4), we obtain 

la*-a~ ~ j "" f ds ,_ ,  ds~e ~l,,-~,l/* 
Sk - 2 / 2  

<~ ~-  r/2 ds~ 2 dsk rsk - s ~ l  k ~ e -es~*-'~Vk 

-= o ( 1 / r )  

where the last estimate follows as in Ref. 9, p. 216, which proves (2.1). 

P r o o f  o f  T h e o r e m  2.2.  If the power series for V, 

V(z)= ~ ~nz ~ 
n = O  

is substituted into (2.1) and (2.2), we obtain 

( - 1 )  ~+~ 
a k ~--- 

k! 
nl  = 0  n k = O  k - I  

d* t s o n, ~.o(~ (0), ~"~(s2),..., ~"~(s~)) 

(3.6) 

Tk!  , ,=0 n~=O --'V2 Uk'O(~ (sI) ..... O"~(Sk)) 

(3.7) 

These representations are basic to our proof. The convergence of the above 
series is a consequence of assumption (c) and will be verified at the end of 
the proof  of this theorem. The importance of assumption (d) is that all 
nonzero terms in the above series have ~,,, . . .  e,7, >~ 0. This follows for (d)(ii) 
from the fact that if the number of terms in c% ..- c~,,, with ni odd, i = 1,..., k, 
is odd, then the Ursell function is zero. We will show next in the proof  that 
the integrals of the Ursell functions are also nonnegative, so the sums in 
(3.6) and (3.7) are entirely of nonnegative terms. This allows us to prove 
(2.3) by comparing (3.6) and (3.7) term by term. 

The point of expanding the V's in their power series is that we are now 
dealing with Ursell functions of monomials,  and such Ursell functions have 
a very useful expression in terms of Feynman graphs. In order to see this, 
we define 

F ~ - {connected graphs j,, _ ~l- vertices, vertex i has n~ lines attached, i =  1 ..... k } 

For each graph 7 in F~, the total number of lines n~ + ..- +nk must be 
even or else y is the empty graph. It will be useful to think of each line in a 
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graph as having a direction, with an initial and final vertex. For line l, st, 
will be the integration variable for the initial vertex and % will be the 
integration variable for the final vertex. Using Lemma 20.5 of Ref. 9, it is 
easy to see that 

fR dk IsuO'dlnl'o'r ..... ~)nk(Sk)): E fR 
k 1 k>OtW 'c l~ k 1 d ~- 's [I Go(st,- %) 

(3.8) 

where 7 denotes a graph and the product is over all lines I in ?;. Similarly, 

1 Z d k s  u P . o ( ~ n l ( S l ) , . . . ,  ~)nk(Sk) ) = d k -  I S u P  o ( ~ n l ( O ) ,  ~ n 2 ( $ 2 ) , . . .  , Onk(Sk)) 
-- 2 ~-- T/2 

fT/2 dk-is [[ Gp(s,,-sr (3.9) = E ~-- T/2 
7 ~ I~ l ~ }, 

where for purposes of comparison with (3.8) we have used the periodicity 
and joint translation invariance in Sl,..., sk of uP o to cancel the ( l /T)  factor. 
We can also do the Dirichlet case to obtain 

1 1 
-~.] Ti2dksldl~,o(Onl(Sl) ..... r T / 2 d k s  ~ y  GD(Sl i ,  Slf) (3.10) 

A similar formula would hold for the case X = 0, but we will not need that 
case for the proof of Theorem 2.2. Notice that it is an immediate con- 
sequence of the Feynman diagram representations (3.8)-(3.10) that the 
integrals of Ursell functions in (3.6) and (3.7) are nonnegative. 

In order to prove the upper bound of (2.3), we substitute the method 
of images formula 

Gp(st,- sll) = ~. Go(st,- so + mT) 
m E Z  

into (3.9) to obtain 

T/2 J T/2 ~? -- l~y Z IE 

We obtain a comparison with (3.8) by writing 

fR  f (n i+  I / 2 ) T  dk 1S 17 Go(si- $J) = E dk- 1S H Go(si- sj) 
k t le  7 n#eZ (hi-- , / 2 ) T  l e d  

i = 1,..,k 1 

= F. .~TI2Ti2d~-'s [I Go(s,-sj+(ni-nj) T) 
n i~Z  -- l~y 

i= 1,...,k- 1 (3.12) 
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where we are indexing the integration variables by the vertices. Now, all 
terms in the sum in (3.12) also appear in (3.11), so combining with 
(3.6)-(3.9) proves that ( - 1 )~+ ~ ak ~< ( - 1 )k+ 1 a~(T). For the lower bound 
in (2.3), we begin by writing (3.8) as 

fR dk IS uO [~nl~O] ~ n 2 ( $ 2 ) ' " "  ~nk(Sk ) )  
k 1 k,O\'F t 1~ 

1 ~v/2 
= lim ~ -~ j  v/2dksI~ Go(si-sj) (3.13) 

where V = M T  for T fixed with M ~  ~ through positive integers. The 
integration variables are again being indexed by the vertices. Splitting up 
the integration as follows, we have 

1 ~v/2 
V.J v/2 dks l~ ao(si-  sj) 

- -  ley 

1 ( M  1 )/2 f ' ( n i  + I / 2 ) T  

m T  n , =  ( M  - 1 )/2 ~(ni I / 2 ) T  l ~  7 

i = l,...,k 

1 ( M 1 ) /2  {, T/2 

--  ~ ~ T/2 dkS I ~  G o ( S i -  SI "~- (ni -  nj) T )  
MT = (M 11/= r~ 

i= 1,...,k 

1 ~T/= 
>1 j [[ Go(si-  sj) 

l ~  

1 ~r/2 
-T J-r/2 d~s [I G o(sg, sj) (3.14) 

where in the next to last inequality of (3.14) we have dropped all terms for 
which n~ :~ nj and we have used the translation invariance of Go(s~- sj). The 
last inequality follows from the pointwise inequality Go(sg- sj) >1 GD(s~, Sj). 
This finishes the proof that ( -1)k+~a~(T)~< (--1)~+~ ak. Notice that in 
the last two inequalities of (3.14) we have actually shown that 

( -  1)~ +~ a~(T)~< ( -  1)~+la~ (--1)~ +~ a~ 

We must still check the convergence of the series in (3.6) and (3.7). We 
will prove convergence for (3.6), since an almost identical proof works for 
(3.7). First, if ~n is the nth Taylor coefficient for V(z), then subsituting the 
bound in (c) into the Cauchy integral formula 

1 I V(z) , 
O~n = ~ i  zl - r Z n'-'-~ i a z  
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and choosing r = n ~/~ gives us 

I~1 ~ Cl eQ~n -,,/is 

This yields 

k 

I~ttl " ' '  ~#'/k t ~ c k  H eC2"~n~ ~'/'~ (3 .15)  

where we take n~ "/~ = 1 if n~ = 0. 
Next, we estimate the right side of  (3.8), exactly as in Ref. 9, 

pp. 220-221. For  each graph 7 e F ; ,  we make the change of variables 
xt = s~, - so, where l = 1 ..... k - 1 label a choice of k - 1 lines that  connects y. 
This leads to 

f dg - -  1S ~I Go(ss,- st/) <<. dx Go(x) 
R k 1 lE ), 

and so 

E f R  d k - l s ~ I a o ( s l i - - S I f ) ~ ( I ~ k ) C k ( ~ )  n l + ' ' ' + n k  
yEi< ~ k-I IE 7 

(3.16) 

where # (F~) is the total number  of graphs in F ; .  If we drop  the restriction 
that a graph be connected, we get an upper bound  of 

( n l  + " ' "  + nk)! 
# (F~)~< [(nl + "'" + nk)/2]! 2 ("' + ' +~k)/2 (3.17) 

If we combine together our  estimates (3.15) (3.17), we have 

I~.1 �9 �9 ~.kl  JRk-~ dk- 1S 0 ,i1 Uk,o(~ (o), ~"2(s2) ..... ~"k(s~,)) 

(nl + "'" +n~)! ~ eC2,,,ni ,,,.,/~ 
.<. c f  [ ( n ,  + �9 + nk) /2] !  i= 

Since (nl + n2)! >~ n~!n2!, the denomina tor  may be estimated as 

k 
[(F/1 -i- "'" + n k ) / 2 ] !  ~> I-[ (n/2)!  

i=1 

(3.18) 
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The representation 

allows us to use H61der's 
numerator of (3.18) by 

where 

n! = e - t t  ~ dt 

inequality to bound the factorial in the 

k 

(nl + "'" +nk)!  <<. [~ [(Pin,)!] '/p' 
i = 1  

k 

P ~  l = l  

i = 1  

We can simplify our factorials by using the estimates (Ref. 16, p. 200) 

e T / S n n + l / 2  e n < l T ! < e n  n + l / 2 e - n  

The lower bound of (3.19) gives us 

while 

k 

[(nl + ... +nk) /2] !  >1 C ~ ~ [nT'/Zn]/2(2e) -n'/2] 
i = l  

k 

(nl + "'" + nk)! <~ Cl ~ \"i{~ni~l/2k[enil"-'ni~-i ' ~  ~ 2  ! 

i = 1  

(3.19) 

follows from the upper bound of (3.19) and from choosing p i = k ,  Vi. 
Applying these bounds to (3.18) yields 

tO'hi  O~nkl d R~k 1 dk- IS 0 n~ "'" Uk,o( r (0),  r , Cn*(S~)) 

k 

<-G C~ 1-I (nTn'(2-'j/2'k"'C'd ') (3.20) 
i = 1  

which is sufficient to prove convergence of the series in (3.6) since/~ < 2. To 
be specific, write the series as 

where 

nt=O n2=O nk=O 

( ,  

~ n l ' n 2 " ' " ' n k  ~"  " " " |k dk - 1S o t71 ~ n2 9~ n k U~,o(r (0), r r 
JR 1 
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and we wish to prove convergence at z I . . . . .  zk = 1. The bound (3.20) 
shows that 

) 
nl ,...,n k -= 

which is sufficient to prove absolute convergence for all z~, .72 . . . . .  Z k .  | 

Proof of  Theorem 2.3. Our proof is a generalization of one we used 
earlier in Ref. 10, Lemma 2.2. We will drop the notation X and T from 
aX(T) and b~(T), since the boundary condition dependence and T depen, 
dence are irrelevent for our proof. We will also assume that V(x)>~ O. This 
will be justified at the end of the proof. Combining the definition (2.2) with 
the Taylor series for ln(1 + x) gives us 

1 ~ ( - 1 )  m 
- 2_, - -  B ( k ,  m )  

a k  Tin= ~ m 

E i ] l b  1+ 1 (--1)m B(k,m) (3.21) 
T k bkm=2 m 

in which 

,(k,m): 2 (I 
h i +  " ' "  + k r n = k  i = l  

k i )  1 

Two relations that will be important in our proof are 

k - r n +  l 

B(k, m ) =  ~ b , B ( k -  n, m -  l ) 
n = l  

(3.22) 

and 

k 1 

B(k, 2 ) =  ~ bk~bk_k, 
k I = 1 

(3.23) 

We will use (3.23) to show that 

IB(k, 2)1 ~< C Ib~ 11 (3.24) 

and it will then follow inductively from (3.22) that 

IB(k,m)l <~ C m-1 Ibk_m+ll (3.25) 
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for k/> 2. Assuming (3.24) for the moment, we will give the rest of the proof 
of the theorem. If (3.25) holds for m -  1 and k ~> 2, then, by (3.22), 

k m + l  

[B(k,m)[~< ~ lb,[ C m ~[bk . . . . .  +21 
n = l  

= C  m ; ] B ( k _ m + 2 , 2 ) l  

~<C " - 1  lbk_,n+ 1[ 

which proves (3.25). The point of (3.25) is that 

1 IB(k,m)l 
B(k, m) = [bkl 

~ C m _ l  bk m+l 
bk 

Now, since V(x) >~ 0, 

( - 1 )  k 

b~-  k! IIV(4)IF~ 

so that 

Ibk ~+11 
fb~l 

k! k -m+ v(~)llk m+ 1 
( k - r n +  1)! [[ V(~b)I[~ 

k~ v(0)ll~ -m+l  ~< 
( k - m +  1)! H V(~b)l]~ 

k! 1 
( k - m + l ) !  V(~b)[l? -1 

(3.26) 

where we 
assumption 
gi, x(k)] 

have used H61der's inequality. Applying the lower bound of 
(e) to (3.26) yields [we omit the X notation from fi.x(k), 

k! k -m+lCm 1 Ibk-m+ll < 
[bgl  ( k - m +  1)! 

which shows that 

(1/bk) B(k, m) <~ C m- ~[1/f~(k ) ] ~-- I (3.27) 
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When (3.27) is combined with (3.21) we obtain 

a k ----- - ( l / T )  bk{1 - O[1/fl(k)] } 

so the proof of the theorem is reduced to demonstrating (3.24). If the lower 
bound of (e') had been used instead, then (3.27) would be replaced by 

(1/bk) B(k, m)~  C'-~[k/g~(k)] m ' 

which, together with (3.21), proves (2.5b). 
In order to prove (3.24), we write [B(k, 2)] as 

k0 J. k k 0 

[B(k, 2)[=lbk_~[ 21b~1+2 ~ Ibjbk_/bk_~{+ 
j = 2  j = k  0 

\ 

(3.28) 

The argument leading up to (3.27) then shows that 

k 0 -- 1 

Ibjbk /bk- l l  =O[1/f~(k-  1)] (3.29a) 
j=2 

for assumption (e), and that 

k 0 - -  1 

~. Ibjbk /bk_~J = O [ ( k -  1)/g~(k- 1)] (3.29b) 
j = 2  

for assumption (e'). It is only in treating the sum from ko to k - k o  that we 
will use different arguments for (e) and (e'). We will do (e') first, since this 
case is easier. Since the integral ~ Vk(~b) d#(q~) is log convex in k, 

for ko ~ j  ~ k-ko.  This gives us an upper bound of 

k~k~ 
j=ko bk_ 1 

F (k-1)~ ]~ v~o(~)+(~) S v ~ ~0(~)d,,(r 
max . . . . .  (3.30) <<. k Lko~j<_K_koj ! (k - - j ) ! J  ~ vk-1(~b)d~(~b) 

If we apply the estimates 

v ~ -  ~o(~) d~,(~) ~< 1 1 
~v  ~ '(~)d~(~) IIv(~)ll~o-?<'gf o ' ( k - l )  
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and 

( k -  1)! 
m a x  

ko<-y~k-ko j! ( k - j ) !  
<~ Ck-  3/-~2k 

to (3.30), we find that 

k --  k0 

Ibfl),_/bx 1] <~ C2k/g~ ~ ~(k-  1) 
j = k o 

<~ C2ke - (ko - 1 )ok 

-=O(e c~,) (3.31) 

where the next to last line uses gl(k)>~ e ~*. Combining (3.28), (3.29b), and 
(3.31) proves (3.24) for (e'). 

For the case of (e), we first pick a 0 < 0 < 1 and consider ko <~j<~ [k~ 
The argument leading to (3.27) shows that 

bib, y < f  ZJ((~)d~(O) 1 j f~( j )  1 
j! f ~ - ' ( k - 1 ) < ~ C ~ - - Y  f i~ - ' ( k -1 )  

<~ Ce j ff2(J) O[eJ(j/k) ~j] = O(k cko) 
fJ l -~(k-  1) 

for ko<~j<~[k~ where the next to last line uses assumption (e). This 
yields 

[k o] 
~, Ibybk_/bk ,{=O(k ,*0+,) (3.32) 

j =  ko 

Next, for [k ~ <~j<~ [k/2] we have 

bjbk_j <~ C ( k -  1) ~- 2/2 j j f f2( j ) (k_j )k- j . f~_j (k_j )  
bk_l j Y ( k - j )  k - j  (k- -1)k- l  f k l ( k -  1) 

<<. Ck 1/2 f~kol([kO]) f k -  {kO3(k _ [k o ] ) 
f k - , ( k  -- 1) 

Ck ~/2 f fS]([k~ f~ - [k~  [k~ 
f l ( k -  1)f} k~  1 ) f k - [ k  ~ I(k__ i)" 

=O [kl/2 (k~__k )Ck~ (~kk~ ] 

= O{exp[--c(1 -- 0) k ~ Ink]  exp(ck 2~ 1)} 

= O { e x p [ - c ( 1 - 0 )  k ~ k]} 
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since 2 0 -  1 < 0 for 0 < 1. The second line above uses the log convexity of 
f~(k). We obtain 

[k/2 ] 
[bjbk _j/b~,_ 11 = O [exp( - Ck ~ Ink ) ]  (3.33) 

j = [k o] 

Since 

k - ko [k/2 ] 
]bjb~_/bk 11~<2 E [bjbk_j/b~ ,I 

j = ko j = ko 

(3.32) and (3.33) prove (3.24) for (e) and this finishes the proof of the 
theorem, except for justifying the assumption V(x)>~ O. It will suffice to 
check this for condition (e). Now, the point of assuming V(x) >~ 0 was that 

f v~(r da(r = II v(r 

This is certainly true when k is even, so we will assume k odd and prove 
that 

k [ b k ]  
I V(r d~(r 1 + 0  (3.34) 

where b is a positive constant such that V(x)>1 - b  [assumption (b)]. To 
do this, let 

I= {r I v(r > 0} 

so that we can consider 

j" [V(r162 IX,(r Vk(r162162 V~(r162 (3.35) 
j v~(r162 ~z,(r v~(r162162 v~(r162 

The lower bound of assumption (e) gives us 

k~f~(k) <<. f Vk(r d#(r 

= f ZI(~)) v k ( ~ )  d].L(~)~- f ~1(~) )  vk(~))  d#(~) 

< f z,(r v~(r du(r 
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since k is odd. If this lower bound is combined with 

~ b  k 

then (3.34) follows easily from (3.35). | 

Proof  of  Theorem 2.4. The theorem is an immediate consequence of 
combining (2.3), (2.5a), or (2.5b), and the upper and lower bounds of 
assumption (e) or (e'). | 

4. APPLICATIONS 

Our applications are natural generalizations of those large-order 
results already known for anharmonic oscillators. Section 4.1 treats 
polynomial potentials, while Section 4.2 deals with exponential and mixed 
exponential-polynomial potentials. In Section 4.2 we also treat an 
oscillatory potential. Section 4.3 is about two-dimensional Euclidean quan- 
tum fields with polynomial interactions. While field theory may seem like a 
very different application from Sections 4.1 and 4.2, the results are almost 
identical with those in Section 4.1--a reflection of the fact that anharmonic 
oscillators are really one-dimensional quantum fields. We should mention 
that quantum fields are one of the main applications of large-order pertur- 
bation theory and of resummation of divergent series. (3'17'19'2~ 

4.1. Polynomial Potentials 

We assume that 

V ( x )  = 

with 7n obeying either 

(i) ~.  ~ 0 ,  Vn 

o r  

(ii) ( -1 ) "~ ,>~0 ,  Vn 

2m 

% x  ~, m = 2 , 3  .... 
n = O  

For simplicity, we assume (X2m = 1, since this coefficient can be absorbed in 
the coupling constant 2. For this example, we will also compute the 
asymptotics of [a~[ l/k, so some additional definitions are needed. We will 
use the following functionals: 

1 
S(~b) = ~ [(V~b) 2 (s) + r d s - I n  f ~b2m(s) ds 

JR JR 

822/46/'5-6-30 
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and 

sx(~) =~ ~-T/2 [(vxO)2 (s) + r ds 

- In r/202"(s) ds, X = p , D  

in which Vx is the gradient obeying J( boundary conditions on 
[ - T/2, T/2]. The functional S(~b) is defined on the Sobolev space w~'z(R), 
which is the completion of C~(N) in the norm 

II~ll~,~ = fR [-(V& (s) + ~2(s)] ds 

The functionals Sx(~) are defined on similar Sobolev spaces on 
[ - I / 2 ,  T/2] with norms given by 

f~/~ [(vx~) ~ (s) + ~2(s)] a~ 
- T/2 

As in Refs. 10 and 11, the functionals S(~b) and Sx(~b) are bounded below 
and attain their infimums. 

We state our two results concerning large-order estimates for this 
example together in the following theorem. 

Theorem 4.1. Assume that V(x) is a polynomial obeying either (i) 
or (ii). Then there exist positive constants k 0, C1, C2, D1, D2, a, b, 7, ~, 
with y, z < 1, such that for all k ~> ko, 

kink 
( 1) k + l  mk~T'( Cl exp(akO D~-ff(-. <~ - ak <<. C2 exp(bU) D~ (4.1) 

Furthermore, 

lim ak l/k = C,, exp[ --inf S(~b) + m] (4.2) 
k ~  [ (m--1)k]!  

where the infimum is taken over all r  W1"2(~), and Cm = (m-- 1) (m 1) 

Remark 1. The exact values of D 1 and D2 are 

D1 = e x p [ - i n f  SD(r D2 = exp[ - - in f  Sp(~b)] 

Remark 2. In light of Eqs. (4.6) and (4.18) in the proof, it might 
seen more natural to state (4.2) as 

ak ~/k = e x p [ _ i n f  S(~b) ] Jim kmk/k! 
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However, the right side of (4.2) is actually the reciprocal of the radius of 
convergence of the Borel transform B(t) for the ground-state energy E(2), 
where 

B( t ) - a~ t~ 
k=o I-(m-- i ' )  ,~]! 

Remark  3. The functionals S(~b) and Sx((~) represent classical 
actions, and (4.2) is an example of an instanton expansion. That is, (4.2) 
follows from a Laplace-type asymptotic expansion of the functional 
integrals appearing in bX(T) about the minima of Sx(Cb). Equation (4.2) 
can also be viewed as a large-deviation result (compare with Ref. 36, 
Theorems 2.2 and 5.1). 

Before giving the proof of Theorem 4.1, there are several points about 
polynomial potentials we wish to discuss. The first is that extremely 
detailed asymptotics can be done in this case. For the case of V ( x ) = x  4, 
Ref. 10 shows that as k--* oo 

k 2. F d O(k --2(1 ~))] (4.3) ak ~ ab*k" -~. ~1 +-~ + 

with 0 < ]~ < 1/4 and a, b, c, d explicitly known constants (ideally, we 
should have fl=0). The methods of Ref. 10 would work to prove an 
asymptotic expansion of the form of (4.3) for the general polynomial 
potential considered in this section--although Ref. 10 is long enough as is, 
just for the case of x4! We should also mention that the first rigorous proof 
of (4.3) for V ( x ) = x  4, obtaining a, b, and c, but not d, was done by WKB 
methodsJ 4) As a comparison, WKB methods have the advantage of 
working also for the higher eigenvalues, while path integral methods 
apparently do not. As a disadvantage, WKB does not seem to extend to 
field theories, while path integral methods do (Refs. 8, 11, and Section 4.3). 

The results of Theorem 4.1 show that only the x 2" term of V(x) mat- 
ters for the large-order behavior of [akl t/k. We expect this to be true for any 
polynomial potential with highest degree term X 2m. Our restriction on the 
signs of the coefficients of the polynomials given by condition (d) of Sec- 
tion 2 is a technical condition necessary for our present proof of 
Theorem 2.2 and should not really be needed to prove Theorem 4.1. The 
results in the physics literature ~z) imply that for asymptotic expansions of 
the form of (4.3), lower degree terms in V can only affect the constants a 
and d and the coefficients of higher order corrections in powers of l/k,  
except for an ~2m_lX 2m-1 term, which will give a contribution of 
exp(c~2m_ 1k~/2). The situation is very different, however, for potentials that 
are nonlinear in the coupling constant 2. Herbst and Simon ~21) have some 
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simple examples of potentials V(x, 2), polynomial in x and 2, for which 
lower degree terms in x very drastically affect the perturbation coefficients 
(see Section 5). 

The last point we wish to discuss is the necessity of condition (d). This 
is an easy to verify sufficient condition for the validity of the bracketing 
inequality (2.3). While it is crucial for our present proof of (2.3), it is cer- 
tainly not necessary, as the following simple polynomial examples show. If 
we take V ( x ) = x 4 - x  2, then a straightforward calculation shows that 
a~(T) <<, al <~ aP(T), and that at least for T sufficiently large, 

- a ~ (  T) <~ -az  <<. -a~( T) 

so (d) is not a necessary condition. A more striking example is given by 
taking V to be Wick-ordered x 4, 

3 
g ( x )  = : x 4 :  ~ x 4 - -  6Go(0) x 2 + 3Go(0) 2 = x 4 - 3x 2 + -  

4 

We will show in Section 4.3 that the bracketing inequality (2.3) holds for 
all k>~ 1 and T for this choice of V. A more detailed treatment of this 
example will be given in Section 4.3, since the quantum field theory exam- 
ples naturally require Wick-ordering. 

Proof of Theorem 4.1. For  the proof of (4.1), we need only verify 
conditions (a) (e) with 

f~.x(k) = C1 exp(ak ~) D~x k(m- 1)k 

f~,x(k) = C2 exp(bU) Dkxk (m 1)k 

where D x = e x p [ - i n f S x ( O ) ] ,  and (4.1) is then a consequence of 
Theorem 2.4. Note that DI = DD and D 2 = Op.  For our polynomial V, con- 
ditions (a)-(d) are immediate. It is also easy to check that f~,x(k) is log 
convex and that the estimate on fJz.x(j)/f{,x~(k - 1) is true. Therefore, we 
need to verify the upper and lower bounds of (e). Also, sharp upper and 
lower bounds in (e) as k ~ oo are what we will need for the proof of (4.2). 
First we introduce some definitions. Let 

so that 

I 
T/2 

v . ( r  = --T/2 ~"(s)  ds 

2 m 

v(~)= ~ ~.v.(~) 
n=O 



Ground-State Energy Perturbation Series 1257 

and let ~b < denote the function that minimizes Sx(~b), X =  p, D. Of course, 
~b c is different for the different boundary conditions, but this will not matter 
in our proof. Also, ~b c is not unique when X =  p, since Sp(~b) is translation- 
invariant. Again, this will not matter for our proof. We verify the lower 
bound first. 

Lower Bound. Our proof is a modified version of our proof of 
Theorem 1.2 in Ref. 11. We start with the case of even k, since this is easier. 
Therefore, let k=2j, j =  1, 2, 3,..., and consider the following, where 
Ax = -Ax+ 1, 

f Vk((b)d#x((~)= exp( - �89  (~b c, Ax~U)) 

x f  Vk(q$+ xfk ~bc) e x p ( - x / k  (~b, ax~<))d~x((~) (4.4) 

where we have translated ~b--, ~b + ~ ~b<. Looking at just the integral on 
the right side of (4.4) gives us 

f V~(~b + xfk ~bc) exp( -x / - s  ((~,Ax(bc))d~x(qb) 

= f {V2(q $+ ~ ~C) exp[-(2/x~s AxO<')]} j dux(qb) 

mk ~ <' (4.5) = k V2m(~ ) E l + O ( k  ,/2)]~/~ 

where the third line follows from Jensen's inequality. Combining (4.4) and 
(4.5) shows that 

f V~((~)d#x(qb))kmk{exp [_kSx(q$<.)]}[l+O(k 1/2)]k/2 (4.6) 

which verifies the lower bound of condition (e) for k even. We also obtain 
from (4.6) that 

lim ( - 1 )k bX(T) ilk 
k ~  [ ( m - - l )  k]! )Cmexp[-Sx(~bC)+m] (4.7) 

again for k even. Inequality (4.7) will be used in the proof of (4.2) and will 
soon be shown to also hold for k odd. 

For the case of k odd, our Jensen's inequality argument does not 
directly apply, since V(q$) may be negative. However, we will show that 
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those r for which V(r + ~ r  0 are negligible for large k. To do this, 
define 

A = {~b[ [ V(~b)- V2m(~)] <k m-a} 
B =  {q~l V2m(Oq-N/'kOc)~ km a} 

The following lemma gives us the necessary estimates. 

k o m m a  4.2. Choose 0 < fl < 1/2. Then for k sufficiently large, 

#x{r } ~< e x p ( -  Ck 1+") (4.8) 

#x{~b [ r e B- } ~< e x p ( -  Ck 1/2m) (4.9) 

where r/= (1 - 2fl)/(2m - 1). 

Proo[ of Lernma 4.2. Inequality (4.8) is proven by using 

#x{O ~ A~ } <~ k-(m-- fl)p f [V(~)  --  V2m(~)[ p d#x(()) 

< ~ k - ( m - l ~ ) P ( p  - 1) (2m-1)p/2 II v ( r  v2m(r 

<~k-(m-a)pp(2m I)p/2cp 

<~ e x p ( -  Ck 1 +") 

where the second inequality follows from hypercontractivity m) and the last 
inequality from minimizing on p. 

For (4.9), write 

#x{r I r e B- } = #x{r Vz,,,(~b/x/"~ + 0 e) < k -a } 

= # X { ~ I  V2..n(~)/~ "~ -~- ~,~c)_ V2m(~C) .~ k- a __ V2m(r 

= # x { ~ [  [ V2m((~ c) - V2m(r ~ "~ ~C)l > V2m(r c) - -  k-a}(4.10) 

in which we assume that k is large enough so that V2m(r c) > k -a. The last 
expression in (4.10) may now be estimated exactly as before, using hyper- 
contractivity, the estimate 

II V2m(r c) -- V2m(r -~-Jf r = O(k-1/2) 

and minimizing on p to obtain (4.9). | 

Returning to the proof of the lower bound for k odd, we write 

; Ve(r dpx(r = f XA(r vk(O) d#x(O)+ f ZA-(r Vk(O)d#x(r (4.11) 
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where ZA is the characteristic function of the set A. We estimate the second 
integral on the right side of (4.11) as 

f )(.A-(fk) Vk(f}) d#x(q))J 

~ ,x{ (~' r A ~ }1/2 I f  V2k(~b)d~x(qk)] '/2 

~< Ux{q~l ~b e A~ }1/2 (2k - 1) mk I] V(q~)ll 

= O[exp(-Ck*+,)] 

again using hypercontractivity. Translating ~b --, ~b + xfk ~b' in the remaining 
integral in (4.1 l) yields 

( '  ) = exp - ~ (~", Ax~b' ) 

x f ;~A,(r V~(r163163 (4.12) 

in which Z,4,(~)=XA(<}+x~(}"). Since k is odd, the integral on the right 
side of (4.12) can now be estimated from below as 

f ZA,((~) Vk(r + x/~ (Y) e x p ( - x f k  (~b, Ax( f ) )  d#x(q~) 

>/- f ZA,(q~)[ V2m(q~ + x/k ~b") - k m - P] k exp( - xfk (q), A x (Y')) d#x(q~) 

(4.13) 

The next step is to split up the integral on the right side of (4.13) by 
inserting the characteristic functions of B and B-. First, we consider 

f XA,<~ ~-(~b) [ V2,~(~b + x/~ ~bc)- k m - ~ ] '  exp( - x/k <~b, Ax(/'))d#x((k)] 

= f + 

x exp(-x/-k  (~, Ax~bC)) dktx(~) 

~< k(m-~)k f ZA,,~ B-(~b) exp(- , , / -k <4, Ax(U)) dpx(~) 

= O(k  ('-'~)k) (4.14) 
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We will see that this term is smaller by O(k #*) than the contribution of 
the integral containing B. On the set B, 

f ZA,<~ ~(~b) [ V2m(~b + v / k 4  )c) - k " -  #1 k e x p ( -  x /k  {~b, Ax(/>) d/tx(~b) 

l' 
xexp(-k-1/2{~b, AxCU))d#x(O) lax{Ol(oeA'c~B} ~-* 

= kmeV2m(d/)[1 +O(k-#)] k {1 + O[exp(-Ck~/zm)]} ~ * (4.15) 

The second line follows from Jensen's inequality, and the last line uses 
(4.9). Combining together (4.11 )-(4.15) gives 

f Vk(~)d~x(O))km*{exp[-kSx(~')]}[1 + O(k-#) ]  k (4.16) 

which together with (4.6) completes our proof that the lower bound of con- 
dition (e) is true. It also follows from (4.16) that (4.7) holds for k odd. 

Upper Bound. For the case of polynomial V(x), the first step in 
deriving the upper bound of condition (e) is to use hypercontractivity. In 
particular, 

l/k 
~< II v(~,)ll k 

so that 

2 m - -  1 

n = 0 

2m-- 1 
~< llV~m(~)ll,+ S 

n=O 

= k m { [[ V2m(~/~'k)ll 

L~~ II v.(~)qh, 

, +  
2m I 
Z 

n = O  

Io{nt k(n-  2m)/2 I] Vn(q~)H21 

f V*(~)d~x(~)~kmk lIV2m(~/~-k)lL~ E1 +O(k 1/2)]k (4.17) 

We will now analyze the lIVz,,(~b/x/-k)lh, term for large k to find the 
required upper bound. This can be done by using the lattice approximation 
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with k-dependent lattice spacing constant b, exactly as in Ref. 11. We 
sketch the proof. For  details of the lattice approximation see Refs. 26, 27, 
30, and 31. The interval [-7"/2, T/2] is discretized, with lattice spacing 
6 = T/n, where n = 2 [ U ]  + 1 is the number of lattice sites and ~ < 1. We 
will use the finite-dimensional Gaussian measure 

1 A~xq))d, q dl.ix,6(q) = exp ( - ~ <q, N x 

where Nx is a normalization constant. The covariance is 

(A6x)-' = (--A6x+ 1 ) - '  

in which A6x is the finite-difference Laplacian on [ - 7"/2, T/2] with X =  p, 
D boundary conditions (see Ref. 31). We also define 

(n  1 ) / 2  

V2m,6(q) = (~ 2 q2m 
i =  - - ( n  - -  I )/2 

and 

1 
S6x(q) = ~  < q, A6xq ) - l n  V2m,6(q ) 

We recall that the lattice approximation can be defined by the continuum 
_ _  X theory as qi-(b(fi.a), where the function f~x is given in Ref. 31, Sec- 

tion IX.1. 
An upper bound on II gRm(O/,f-s now follows from 

t i[ v, . (r163 v,., ,~(r 
<. tl v~(4 , / . , / -k ) -  v,,,,,~(~/.j~)ti~ 
~< ( k -  ~)-' iI v~o~(o/./-k) - v,.,,~(o/.f~)il, 
= o ( ~  ~ = O( k  ~o) 

for some 0 > 0, and so 

[I g2m(O/,,/-s <~ II gzm.~(~/',~)llk + O(k ~o) 

Therefore, we have 

el gzm(~/,,/"s <<, Ill r2m.~(~/,,f's + O(k ~O) ]k 

= II rRm.~(~/,,/-s [1 + O(k ~O)]k 
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where the last line uses that our lower bound argument easily shows that 
II g2m,~(f~/x/~)llk is bounded below by a constant. Our upper bound is now 
reduced to estimating a finite-dimensional integral, since 

= f 

= f exp[-kSax(q/,,/-s d'q Nx 

k "/= f exp[-kSax(q)] d~q Nx 

The last integral may be estimated as 

f exp[-kSax(q)] d'q Nx 

f exp[-Sax(q)] dnq Nx (4.18) ~< exp[-kSax(q")] exp[Sax(q~)] 

for k>~ 1. We will write exp[-kSa(qC)] as 

exp[ -kS6x(q")] = exp[ - kSx ( ( / ) ]  exp{ -k[S6x(q e) - Sx(~bc)] } 

and now show that 

IS6x(q c) - Sx(O")l = 0(6) = O(k -~) 

Since r is a critical point for Sx(ck), it is a solution of 

OC(x)= 2m(O") 2m- 1(x)/fr/~/2 ds (~c)2m(s) ( - A x + l )  

and the finite-difference version of this equation holds for qq It follows 
from the critical point equations that 

(0 c, ( - A x +  1) q)') =2m 

and 

(qC, (_A6x+ 1) qC) =2m 
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Therefore, 

V2.-,~(qC)] k 
exp{ -k[S6x(q c) - Sx(q~c)] } = k ~ J  

so we need only estimate the rate of convergence of V2m.e(qC). By defining 
O;(n)-  (b"(n6), we obtain the standard Riemann sum convergence estimate 

I v , . . , ( ~ ; ) -  v , . . ( ~ ' ) l  = o ( ~ )  

since ~b" is smooth. (37~ In order to estimate Vz,~,~(q")- V2,~,~(~b;), we define 

OC(x)=qk"(x)[2m/~r/'L_ /o  7"/2 ds(OC)2m(s)] 1/(2m 2, 

and 

so that 

and 

c__ c c 2m v,, - q,, 2m 6(q. 

A standard numerical analysis estimate (Ref. 38, p. 433) then gives us 

t4. ;(n~) - v~;t = o ( ~  2) 

which yields 

This shows that 

and using 

we obtain 

I v2 . . .~( r  - v2...~(vC)l -- o ( ~  ~) 

Z (~(~)2m (n) = ( 2 m ) "  6(~ ; )  2'~ (n) 
11 

I Vz,~,~(qs;) - v2m,~(qC)l = O(~ 2) 
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Combining our estimates gives us our claim, 

IS~(q c) - 3,:(r = O(•) 

We may now combine 

exp[-kSax(qC)] ~ e x p [ -  kSjc(r exp(bk I -~) 

with (4.17) and (4.18) to obtain the upper bound 

f Vk(r d/*x(r ~< C2 exp(bU) exp[ -kSx(r  k ''~ (4.19) 

This finishes our verification of (e), and so (4.1) now follows from Theorem 
2.4. 

It is an immediate consequence of (4.19) that 

( - -  1 )k b f f ( T )  1/k 
li~rn~o [ ( m -  1)k]  <~CmeXp[-Sx(OC)+m] (4.20) 

Therefore, (2.3), (2.5a), (4.7), and (4.20) yield 

CmeXp[(--SD(O<)+m]<~k~oolim [(m---i)k]!ak I 
1/k 

<<. Cm exp[ - S p ( r  C) + m] 

The fact that 

lira Sx(r162 X = p ,  D 
T ~ c o  

is easily proven following Ref. 10, Lemma 6.4, and Ref. 11, Lemma 3.1. 
This completes the proof of (4.2). I 

4.2. Exponential Potentials 

Our potential is assumed to be of the form 

where either 

(i) ~ > 0 ,  

o r  

(ii) c~r 

V ( x )  = x m e  ~x 

m = 0, l, 2, 3 .... 

m = 0 , 2 , 4 , 6  .... 
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We omit the case of c~ < 0 and rn odd, since this implies that V(x) is not 
bounded below. However, we will make some comments on this case later 
in the section. Exponential potentials have recently been investigated by 
Maioli (22) and Grecchi et al. (23) (25) In particular, the latter papers are con- 
cerned with a generalization of Borel summability to treat perturbation 
series whose kth perturbation coefficient grows faster than any power 
of k! for large k. For the above V(x), it is expected that 
a ~ k  "~k exp(c~2k2)/k!, c >0. When m =0,  this was rigorously proven in 
Ref. 12 using Feynman diagrams. We now extend this result to the m r 0 
cases of (i) and (ii). 

T h e o r e m  4.3. Assume that V(x) obeys either condition (i) or (ii). 
Then there exist positive constants ko, C1, C2, a, b such that for k/> ko, 

C~kmk exp(a72k2)k! ~< ( -  1)k+ 1 ak ~< C~k~k/2 exp(be2k2)k! (4.21) 

Remark. For m = 0, the advantage of the proof of Ref. 12 is that the 
values for the constants CI, C2, a, b are much better. In (4.21) the con- 
stants depend on T, and in such a way as to not improve as T increases. 
The Feynman diagram method has T-independent constants and the values 
for a and b are very close to the expected exact value (see the remark 
following Theorem 2.1 of Ref. 12). On the other hand, the Feynman 
diagram technique does not easily extend to the m r 0 case. 

Proof. It is trivial to verify that conditions (a)-(d) are satisfied by 
V(x) obeying either (i) or (ii). Therefore, we are left with checking (e'). To 
do this, it is sufficient to check case (i). If c~ > 0 in (ii), then this is included 
in (i). Since 

;[;2 (bm(s) e~O(") 

= ( - 1 )m~ (j Ore(S) e-~O~s) ClS cl#x(~) 

the c~ < 0  case of (ii) also reduces to (i). However, Theorem 2.3 of Ref. 12 
shows that for case (i), 

C~k mk exp(acdk2) ~< - (4.22) k! (1)kb~(T)~Ckzkmk/2exp(bc~2k2) 
k! 

for k sufficiently large. This is just (e') with gl.x(k) = C l k  m exp(ac~2k) and 
gz.x(k) = C2 km/2 exp(b~Zk). Briefly, the lower bound of (4.22) is proven by 
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a Jensen's inequality argument if m is even or if m is odd and k is even. If m 
and k are both odd, then Jensen's inequality is combined with the second 
GKS inequality to obtain the lower bound. For  the upper bound, we use 
the Schwartz inequality to separate the ~b'~(s) term from the exp[~b(s)]  
term. The monomial  can then be handled as in Section 4.1, while the 
integral of the exponential term can be evaluated exactly and the result is 
easy to estimate. Theorem 4.3 is now a consequence of Theorem 2.4. | 

Another exponential potential that could be handled by our methods 
is 

V ( x )  = x ~ cash x, m = 0, 2, 4, 6 .... 

It is straightforward to verify conditions (a) (e') for this potential and to 
see that (4.21) still holds. Also, we could consider 

V ( x )  = x ~ + xme ~x 

with c~ >0 ,  m = 0 ,  1, 2, 3,..., n = 2, 4, 6 ..... The xme ~'c term will yield the 
dominant contribution to a~ for large k, so that (4.21) is also true for this 
potential. 

Our next example is a potential that oscillates unboundedly. 

T h e o r e m  4.4. Assume V(X)-=-x2m[lq-cos(x3/2)], m-~--O, 1,2 ..... 
Then there exist positive constants C~, C 2, a, b, and k 0 such that for 
k >~ko, 

Ckk(4m-3/2)k  exp(ak4) .< ~ "  1)k+ ~k--~k  exp(bk4) 

R e m a r k  1. While V oscillates between zero and infinity as x-- ,  +o% 
notice that V increases monotonically to infinity as x - - , - 0 %  since 
COS[-(--X) 3/2] = cosh(x3/2). It is not possible for us to treat an example of a 
potential that oscillates as x goes to both plus and minus infinity, because 
the sign condition (d) ensures that V is monotone for at least x positive or 
x negative. 

R e m a r k  2. The correct large-order behavior is presumably 

!akl ~ C kk4mk exp(ck 4) 

Our estimates for this theorem and for Theorem 4.3 are consistent with 
work of Dolgov and Pape r ,  (35) who formally showed that if 

g ( x ) ~ e x p ( a l x l ~ ) ,  0 < v < 2 ,  as Ixl ~ oo 
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then 

[ak] ~ exp(bk~), k ~ 

with a =  2 / ( 2 -  v). The V of this theorem behaves as V(x)~x 2m exp(lx[ 3/2) 
a s  X ----~ - - o O .  

Remark 3. It is interesting that the coefficients a k for this potential 
grow too fast for even the generalized logarithmic Borel summation of 
Ref. 24 to apply. 

Proof'. As with the other exponential potentials, the proof reduces to 
verifying condition (e'). For the upper bound we use that 

V(x) ~ 2x 2m exp([xl 3/2) 

Two applications of the Schwartz inequality then yield 

f Vk(~b) d#x(~b) 

<~ 2~j l~ ds dl~x(@) 

<~ 2 ~ f ~ fr/2 qJ4m(s) ds]k/2 I ~r/2 exp[2 Iq~(s)l 3/2] ds] k/2 d#x(~b) 
L_ - 7"/2 [_ o 7"/2 

k 

~4m(s) 

xlf{fr/_;2exp[2l~)(s)13/2]ds}kdgx((~)]~/2 

)k 71/2 
<~C~km~If {f2Z;2exp[2lf}(x,13/2]dsf d~x(~b'J 

where the last line follows from Section 4.1. The inequality 

fr/2 exp[2 [if(s)[ 3/2] ds~ Texp[2  Ilq~(s)l[ 3/2] 
r/2 

where IIll is sup norm, gives us the bound 

exp[2 I~b(s)[ 3/2] ds dt~s((~) <~ T k f exp(2k flail 3/2) d~x((~) J 
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The previous integral may be estimated by writing 

f exp(Zk I[~bll 3/2) d~x(~b) = - f o  e2kt dcott) 

in which 

co(t) =#x{~bl I1~b113/2> t} 

=~x{~l I1~11 >t2/3} 

Now, a well-known Gaussian tail estimate (see, for example, Ref. 9, 
Lemma 18.7) shows that 

co(t) ~< C1 exp( - C2t 4/3) 

(this would also follow from the method of large deviations~ Therefore, 
integrating by parts, we obtain 

;0 Jo - -  e 2kt dco(t) = 1 + 2k e2k%(t) dt 

<~ Clk fo  exp(2kt - C2t 4/3) dt 

fo o = CI k4 exp[k4(2s - -  C 2 S 4 / 3 ) ]  ds 

If we let f ( s ) = 2 s - C 2  $ 4 / 3 ,  then f(s) has a unique, positive, absolute 
maximum at s* = (3/2C@. Since we can assume k > 1, 

k4f(s) = (k 4 - 1 ) f(s) + f(s) <~ k4f(s *) + f(s) 

and so 

2 exp[k4f(s)] ds <~ {exp[k4f(s*)] } [exp f ( s ) ]  ds 

Combining this bound with our previous inequalities yields the upper 
bound 

f vk(•) d#x(O) ~ Ckk mk exp(bk 4) 

For the lower bound, expanding V in its power series gives 

f Vk((b) d#x(~)) 

. . . . .  ds, ~b 2m + 3"'(si) d#x((~) 
i = 1 - -  7"/9 nl=O n k = O  ~ 



Ground-State Energy Perturbation Series 1269 

where a 0 = 2 ,  ~ =  ( - 1 ) ~ / ( 2 n ) ! ,  n~> 1, and the convergence is p roven  
exactly as for the series representat ions  in (3.6) and (3.7). Not ice  that  all 
terms in this expansion are nonnegat ive,  since d~x(~) is even. The lower 
bound  m a y  be found by using the F e y n m a n  graph representat ion 

~ f T / 2  ~2,r, + 
&, 

i = 1  ~  T / 2  

Y ~ f f k  - -  l ~ y  

where now 

Fk = {graphs Ik vemces ,  vertex i has 2m + 3n, lines at tached,  i = 1 ..... k} 

Restricting the s integrat ions to [0, 1 ]~ yields 

~2 
~' ~ 7"/2 dks ~ G x(sl,, s# ) >~ #(F~) [Gx(0,  1)]ink + 3In, +--- + nk)/2 

The Stirling formula  est imates of (3.19) show that  

# (F~) >~ C(2mk + 3nl + "'" + 3nk) mk+ 3(n~ + --. + n~)/2 e - [,~k + 3(~, + .... + ,,~//23 

Therefore,  

"'" ~ I~ , , ' "~ , ,k l  # ( F k ) [ G x ( 0 ,  1 ) ]  m k + 3 ( ' l +  " '" +nk)/2 
n l  = 0 n k = 0 

(2ink + 3kn) "k + 3k./2 
>/ C [ (2n) ! ]k  e - ' k  3k"/2EGx(O, 1)] mk+3k"/2 

>~ Cf(2n)  ,/2 (2ink + 3kn) mk + 3kn/2 ek,/2[Gx(O ' 1)]3k,/2 
(2n) 2"k 

where we have taken n l = n  2 . . . .  = n k = n .  The choice n = c * k  3, with 
c * =  [Gx(0  , 1 )3 ]3 /4  2, maximizes  this lower bound  and after some sim- 
plification we obtain  

f Vk(~) d#x(~) >1 C~kl4m-3/2)~ exp(ak  4) 

in which a=c*/2 .  This gives us a lower bound  ov  ~ Vk(~b)d#x(~ ) with 
gl,x(k) = C l k  C4m-3/2) exp(ak3),  which satisfies the required lower bound  of 
condit ion (e'). The  theorem now follows f rom Theorem 2.4. | 

822/46/5-6-31 
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Finally, we want to mention 

v ( x )  = x m e  ~x 

when e < 0 and m is odd. While this example is unphysical, in that the 
resulting operator H(2) is not bounded below, it is interesting to see that a 
version of the bracketing inequality (2.3) still holds in this case. That is, if 
we take (2.1) and the second line of (2.2) to be the definitions, respectively, 
of ak and x a k (T), then 

(--1)k + l a~( T) ~ (--1)k + l ak ~ ( --1)k + l a~( T), keven  

( - - 1 ) ~ + l a ~ ( T ) ~ ( - - 1 ) k + ~ a k ~ ( - - 1 ) k + ~ a ~ ( T ) ,  k o d d  

This follows from noticing that when m is odd, 

UkXo(Om(sl) exp[~r ~bm(sk) exp[cO(sk)]) 

= (-- 1) k U~.o(Om(s,) exp[--er em(sk) exp[--e~b(sk)]) 

so the c~ < 0 case is related to the ~ > 0 case, for which we have already 
proven (2.3). Since for this V(x), ( - 1 ) k + l  ak and ( - 1 ) k +  1 a)'(T) are non- 
negative for k even and nonpositive for k odd, we can combine the above 
into a single bracketing inequality 

la~'(Z)l ~< lakl <~ ta~,(T)l 

The main reason that we have mentioned the c~<0, m odd case of the 
exponential potential is that it gives us another example where the suf- 
ficient condition (d) is violated, and yet the bracketing inequality (2.3) (or 
its reverse when k is odd) remains true. 

4.3. P(~)2  Euclidean Quantum Fields 

Our last example is that of a polynomial interaction for a two-dimen- 
sional continuum Euclidean quantum field theory. We will also briefly 
mention d-dimensional lattice Euclidean fields. Our basic result is to extend 
the results of Theorem 4.1 to these examples. For background on 
Euclidean field theory see Refs. 26-31. To begin, define the partition 
function Zx(2) as 

Zx(2) = j e -;'v(r d/~ x 

where A = [ - -  T/2, T/2] 2, and d#A x is the mean-zero Gaussian measure with 
covariance 

I r 1 6 2  ' ( x , y )  
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where J x is the Laplacian on A obeying X = p, D, 0 boundary conditions. 
The interaction V(~b) is 

in which 

with either 

V(qi) = In :P(~b)(x): d2x 

2m 

P ( x ) =  ~ a,x n 
n = 0  

(i) a,~>0, Vn 

o r  

(ii) ( - 1 ) ' ~ . > 0 ,  Vn 

and we assume 0{2m-----1 for convenience. The Wick ordering is formally 
defined by 

E-/23 (--1)in! Gx(x,x) j (b'- 
:~b'(x):= Z j!-(n--~j~.2 j 2/(x) 

j = O  

Since all terms in this expression are infinite, V(~b) must first be regularized 
and then defined in the limit as the regularization is removed. (26'27) The 
pressure is defined as 

p ( 2 ) =  lim 1 lnZx(2  ) 
I~l ~ IAI 

Existence of the limit is shown by either a cluster expansion (26'29) for small 
2>/0, or by conditioning and decoupling for all 2~>0. (26'27'3~ That the 
pressure is independent of the boundary conditions X =  p, D, 0 is also a 
result of Ref. 31. The cluster expansion results show that p(2) has an 
asymptotic perturbation series (32) 

k = 0  

as 2--+ 0 +. As in Section 4.1, we define functionals 

1 
S(~b)=~ fR2 [(V~b)2 (x )+  ~2(x)] d2x- ln  fR~ r  d2x 
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and 
1 

- In fA ~b2m(x) d2x, X = p, D 

which are defined on appropriate Sobolev spaces. These functionals are 
bounded below and attain their infimums (for details, see Ref. 11). Our 
asymptotic result is the following. 

T h e o r e m  4.5. Let P(x) obey either (i) or (ii). Then there exist 
positive constants ko, C~, C2, D1, D2, a, b, 7, r, with 7, r <  1, such that for 
all k ~> k 0, 

kink k'nk 
C 1 exp(ak ~) Df ~ ~< ( - 1 )k ak <~ C2 exp(bU) D~ k! 

Furthermore, 

lim ak ~/k k~o~ [-(m-- 1) k]! =CmeXpE- in fS (O)+m]  (4.23) 

Remark. For P ( x ) = x  4, (4.23) was first proven in Ref. 11. The con- 
stants D~, D2 are exactly the two-dimensional versions of the expressions 
for D1, D2 given in Remark 1 following Theorem 4.1. 

Only the dimension has changed in going from Theorem 4.1 to 
Theorem 4.5. The path integral framework shows the unity of the examples 
of Sections 4.1 and 4.3, since we may view them together as P(~b)a 
Euclidean fields for d =  1, 2. The proof follows a pattern very similar to 
Section 4.1, so we will be brief. Details can be filled in from the proof of 
Theorem 4.1 and from Ref. 11. We use 

1 dk ~ lnZx(2  ) 
a ~ ( A ) -  ]A] k~ d2 ~ =o 

( - 1 )k fA dZkx -- lci u~176 ):''''' :P(d~)(Xk):), X = p ,  D, 0 

to obtain a bracketing inequality, where  uk. ox is the kth Ursell function with 
respect to the measure d/IA x. 

L e m m a  4.6. For a l lk>~l  and T, 

( -  1) k a~(A) <~ ( -  1) k ak <~ (-- 1) k aP(T) (4.24) 
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with 

A version of Theorem 2.3 holds for this example, since 

k=O 

bX(A) = (___!)k I Vk(~) dlx~ 
k! J 

k e m m a  4.7. For  all k sufficiently large and for all T, 

aX(A) = (I/[A]) b~C(A)[1 - O(1/k m l)] 

The last results we need are the upper and lower bounds on b~(A). 

T h e o r e m  4.8. Let X =  p, D. Then for k ~> k 0 

C1 exp(ak 7) e x p [ - k S x ( ~ c ) ]  k mk 

<~ f vk((~) d~X <~ C2 exp(bU) exp[ -kSx (qY)  ] kmk 

(4.25) 

and so 

[f lim k " Vk((J) d# x = exp[ -- Sx(q$<)] (4.26) 
k ~ c o  

Remark. In (4.26), ~b < is the function that minimizes Sx(~b). All com- 
ments made about the ~b C of Section 4.1 at the beginning of the proof of 
Theorem 4.1 apply in this case also. 

These three results are all the input needed for proving Theorem 4.5. 

Proof of Theorem 4.5. Combining (4.24), (4.25), and the upper and 
lower bounds of Theorem 4.8 yields the claimed upper and lower bounds 
of Theorem 4.5. To prove (4.23), we combine (4.24)-(4.26) to obtain 

ak k]! 1/k 
cmexp[-SD((bC)+m] ~< lim~ [ ( m -  1) 

<~ Cm exp[ --Sp(~b c) + m] 

The limit in (4.23) then follows from 

lim Sx(~bc)=infS(qD), Z = p ,  D 
IAI ~ 

which is proven exactly as in Ref. 11, Lemma 3.1. I 
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P r o o f  o f  L e m m a  4.6 .  F r o m  Ref. 32, we know that 

( - 1 )  ~ f d ~ - ~  a k -  k! JR 2k-2 UkO'0(:P(~)(0):'  : P ( ~ ) ( x 2 ) :  ..... :P(~9)(Xk):) 

and it is easy to see that 

aX(A)  = ( - 1 )k 
f A d2kx b/ f f '~  :P(r  

k------(. ]A] 

These may be rewritten as 

and 

( _ _ l ) k  2m 2m 
ak= ~! Y ' " Y ,  ~ . , ' " %  

;'11 = 0 nk=O 

P 
X JR[2k 2 d2k 2X 0 . nl . Uk,0(. r (0)., :r , :r 

aX(A)  = - -  
( _ l ) k  2m 

hi=0 nk=O 

f A 2k X , nl , x d x u~,o(.r (Xl).,...,:r 

The Ursell functions have a Feynman  diagram representat ion as 

f R2k 2 d2k-  2x U0'o(:•m(0):' :on2(x 2):'"" :q~"k(Xk):) 

and 

= ~ fA d2k 2X I ~  Go(XI i - -XI / )  
7~Fk Icy 

A d2kx X . nt Uk.0(. r (X,) ..... , :r ) 

where 

Fk = {connected graphs] k vertices, 

no selfqoops, vertex i has ni lines attached, 

i = l  ..... k} 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
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From the Feynman diagram representation and our restriction on the signs 
of the c%, it follows that 

fA X . nl . ~m'''~nk d2kx Uk,o(.q} ( X l )  ...... : ~ ) n k ( X k ) : ) ) O  

and similarly for (4.27). This uses the fact that uk, ox = 0 if n I -I- " ' "  q-/7~: is 
odd. Combining (4.27)-(4.30), we see that ak and x a k (A) have expressions 
just like (3.6)-(3.10) of the proof of Theorem 2.2. The only difference is 
that the Wick-ordering suppresses graphs with self-loops. Therefore, the 
proof goes through exactly as before. In fact, it is easier, since the sums in 
(4.27), (4.28) are finite. | 

We omit the proof of Lemma 4.7, since it is virtually indentical to the 
proof of Theorem 2.3. Our upper and lower bounds from Theorem 4.8 are 
of exactly the same form as those found in the proof of Theorem 4.1. 
Therefore, the proof of Theorem 2.3 for assumption (e) will work for 
Lemma 4.7. We wish to point out that the proof of Theorem 2.3 for 
assumption (e) corrects an error in the proof of Lemma 3.1 in Ref. 11. The 
earlier proof relied on the assumption that 

S [ V(~b)[ k d# 

k~ 

was log convex in k. While we still believe this to be true, the proof of log 
convexity given in Ref. 11 is incorrect. 

Proof  of  Theorem 4.8. The proof is a combination of the proof of 
Theorem 4.1 and of the proof of Theorem 1.2 of Ref. 11. Our Jensen's 
inequality argument for the lower bound goes through unchanged for the 
case of k even. For the upper bound, it is necessary to use the lattice 
approximation, as we did in the upper bound of Theorem 4.1. The 
estimates require that we now choose e < 1/2 in 6 = T/(2[U]  + t)  in order 
to control remainder terms. For  the lower bound when k is odd, we must 
also use the lattice approximation with our k-dependent choice of 6. This is 
because of the infinite counterterms in the Wick ordering. The difference 
between the continuum and lattice theory is then controlled by using 
Lemma 2.2 of Ref. 11. This may be easily integrated into the lower bound 
proof in Theorem 4.1. | 

In Section 4.1 we briefly mentioned the anharmonic oscillator with a 
Wick-ordered polynomial for a potential. If we consider 

) H(iL)=~ -- ~x2+X 2 -  1 +)~ :P(x): 
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where P(x) obeys either (i) or (ii) of Section 4.3, then the bracketing 
inequality (2.3) holds, by the proof of Lemma 4.6, and consequently (4.2) 
holds for this choice of potential. In this case, there are no infinities in 
:P(x):, since Gx(x, x) is finite for dimension d =  1. Therefore, if P(x) is a 
semibounded polynomial obeying our sign convention, then :P(x): is 
simply a new semibounded polynomial, but for which the sign convention 
is no longer true. This gives us an example of an interesting class of poten- 
tials for which condition (d) does not hold, and yet all of our results, 
including the bracketing inequality, are true. 

If S~(q) is the d-dimensional lattice version of the functional S(~b), then 
the proof of Theorem 4.5 easily extends to show the following (we state 
only the result for the lakl 1/k asymptotics). 

T h e o r e m  4.9. Let ak be the kth perturbation coefficient for the 
pressure in a d-dimensional lattice Euclidean field theory with interaction 
P(x) obeying either (i) or (ii). Then 

lim ak 1/~ k~o~ [ ( m - - l )  k] =Cmexp[-infS~(q)+m] 

Remark. This was first proven for P(x)=x 4 in Ref. 13. 
Finally, we want to mention that for the case of P(x)= x 4, Magnen 

and Rivasseau 18) have extended (4.23) to three dimensions. This requires a 
combination of the proof of Theorem 4.5 with an interesting Feynman 
diagram analysis necessary to deal with the mass counterterm of (~b4)3. 

5. D I S C U S S I O N  

There are three problems we want to mention as possible areas for 
further work on large order (see also Ref. 1, Section 7 for a list of specific 
problems). The first is that of obtaining large-order estimates for higher 
eigenvalues. If 

E,(2)- ~ a~ ~ 
k - - O  

as ) t ~ 0  +, where Ei(2) is the ith eigenvalue of H(2), then the dominant 
term in the large-order behavior of a~, should be independent of i. In par- 
ticular, for V(x)=x 2'~, a ~  [ ( m - 1 ) k ] ! ,  Vi (see Ref. 2 for a statement of 
the detailed asymptotics), and for V(x)=exp(c~x), a~exp(ct2k2/4)/k!, 
Vi. (25) Since path integral methods work so well for the lowest eigenvalue, it 
would be interesting to have a result that said that large-order estimates for 
the lowest eigenvalue implied large-order estimates for the higher eigen- 
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values. Of course, this is not a problem for WKB methods, since they work 
for all eigenvalues. However, WKB has so far been used to obtain very 
detailed asymptotics for particular V's. (4'5) There is no proof by WKB 
methods of large-order estimates for a general class of V's in the spirit of 
Theorem 2.4. In particular, for the potential V ( x ) =  x m exp(~x), treated in 
Section 4.2, path integrals (and Feynman diagrams for m = 0) provide the 
only proof so far of divergence of the perturbation series and of large-order 
estimates for the lowest eigenvalue. Therefore, it would be worthwhile to be 
able to extend this result to higher eigenvalues. 

It would also be interesting to know when either Theorem 2.2 or 
Theorem 2.4 can be obtained under a weakening of assumptions (a)-(e) or 
(e'). As explained previously, (b) and (c) are quite reasonable, while (d) 
seems the obvious condition to try to relax. In Section 4.1 and 4.3, exam- 
ples were given of potentials V for which (d) was false, but Theorems 2.2 
and 2.4 were true. A particular case worth doing would be to prove (4.2) or 
(4.23) with 

2 m  

V ( x ) -  f ( x )  = E 
n = 0  

~2m = 1, and no restriction on the signs of c~, n = 0 ..... 2m - 1. In regards to 
weakening either (a) or (d), it would be helpful to know how the signs of 
the Ursell functions in (2.1) and (2.2) vary with k for more general V's. For 
V's obeying (a)-(d), the Ursell functions were nonnegative, since we could 
expand the V's in power series, explicitly evaluate the Ursell functions of 
monomials, and then use our sign condition (d). The sign dependence is 
important for the current proof of Theorem 2.2. 

For (e) and (e'), it would be helpful to weaken the required estimate 
on f~ .x( j ) / f { ,x l (k  - 1) in (e) and the lower bound on gl,x(k) in (e'). The 
estimate in (e) means tha t f l , x  andf2,x have to be reasonably close to each 
other. It is also implicit in this estimate that f l , x  is growing at least as fast 
as k, which seems reasonable, since all the examples in Section 4 grow at 
least that fast. For most of the proof of Theorem 2.3, only the lower 

on f Vk(~b)dlzx(O) in (e) and (e') are needed. The additional bounds 
estimates in (e) and (e') are both needed only to handle the term 

k --  k 0 

E Ibjb _j/b _lt 
j k0 

used in proving (3.24). An alternate approach to this term would be to 
assume that lb~l is log convex in k, since then 

Ibjbk_j] <~ Ibkobk_kol, k o < ~ j < ~ k - k o  
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However, it has not been possible for us to prove log convexity of [bk[ for 
any of the examples we treat in Section 4. While it seems reasonable to 
believe that log convexity is true for the examples, it appears to be difficult 
to prove. Our present assumptions are capable of handling a potential that 
grows polynomially [condition (e)] or like exp(lx[ v) for 1 ~ v < 2 [con- 
dition (e')-l. We will not be able to prove Theorem 2.3 for a potential that 
grows faster than a polynomial but slower than exp(lxl). An example 
would be V(X)~---x2m[1-JFCOS(XI/2)3. Since V(x ) '~x2mexp( l x [  1/2) as 
x--* -0% we would expect that [ak[ "~exp(ak 4/3) as k--* 0% by Remark 2 
following Theorem 4.4. This is not fast enough for the lower bound on g~.x 
in (e') to hold. While (e) could apply in principle, if we use the methods of 
Theorem 4.4 on this potential we will obtain upper and lower bounds with 
dominant term exp(ak 4/3), but with different values of a in the upper and 
lower bounds. Therefore, we will be unable to verify the estimate on 
f ~.x(j)/f  {~xt(k - 1). 

Perhaps the most interesting (and difficult) extension of our results 
would be to potentials V(x, 2) that are nonlinear in 2. The best known 
example is the double-well anharmonic oscillator, 

1( d2 ) 22 
H ( 2 ) = ~  - ~ x 2 + X 2 - 1  -~.~X3-[-TX4 

for which the ground-state energy perturbation coefficients are expected to 
behave like 

a2k ~ -- 3 3~k! 
7"C 

for large k (a2k + 1=0, Vk). This is based on numerical calculations (18'33'34) 
and an interesting but formal path integral argument (Lipatov method)/~8~ 
Proving upper and lower bounds that grow like k! for the a2k of this exam- 
ple would be a good place to start for nonlinear potentials. Finding 
methods that yield large-order estimates for more general nonlinear V 
should be subtle. As mentioned in Section 4.1, lower order terms in non- 
linear V can very dramatically affect the large-order behavior of the pertur- 
bation coefficients. For example, simply changing the double-well 
Hamiltonian to 

t (  d2 ) 22 
H(,~)=5 - 2-~x2+x2-1 +;4x~-x)+Tx4 

produces a ground-state energy with perturbation coefficients a~=0,  Vk 
(see Ref. 21)! 
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A C K N O W L E D G M E N T  

I w i s h  to  t h a n k  B a r r y  S i m o n  for  a he lp fu l  d i s cus s ion .  
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